If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+10t-60=0
a = 5; b = 10; c = -60;
Δ = b2-4ac
Δ = 102-4·5·(-60)
Δ = 1300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1300}=\sqrt{100*13}=\sqrt{100}*\sqrt{13}=10\sqrt{13}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{13}}{2*5}=\frac{-10-10\sqrt{13}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{13}}{2*5}=\frac{-10+10\sqrt{13}}{10} $
| 5(x-5=5x+25 | | 6x+8x=182 | | 125m-75m+47750=50750-200m | | d^2+14d=-13 | | -2x2+4x+48=0 | | 9x=10-2(X+6) | | 3x=1-5(X+4) | | 45-(X+3)=2x | | 6x+11x=1600 | | 4x+4x+1=40 | | x^2-1.8x+8.81=0 | | 6=-2(w+7) | | 6^x=10 | | 18x+128=360 | | 6^(x+4)=25 | | 5=7.7(-7-5e) | | 109-y=168 | | V=(17-2x)(7-2x)x | | -v+283=196 | | -v+238=196 | | 9(v-1)=-45 | | -15=5u+7(u-3) | | (780-m.60)/6=70 | | 2+6x=3x+12-4 | | 10+15x=9x+12 | | -7X+8=2-5x | | 5x-10=2x+28 | | -1k+21=-15k+7 | | 8t-96=72 | | 9x+x+14=2(5x+7) | | 0.5x-0.2x=0.3x-2.5 | | -4x+3=-4x+ |